66 research outputs found

    Filtering antenna with two-octave harmonic suppression

    Get PDF
    A novel 2nd–order antenna with filtering performance and two-octave harmonic suppression is proposed. In order to reduce the effects of the harmonics of the antenna, two types of antennas (PIFA and patch) with different resonant characteristics are integrated into the design. Compared with the traditional patch antennas, this integrated work can not only eliminate the high-order harmonics of the antenna but also improve the in-band bandwidth and frequency selectivity. The 2nd and 4th–order harmonics of the patch are suppressed because of the detuned harmonic performance of the PIFA and patch. The 3rd-order harmonic is eliminated by integrating notch resonators in the PIFA. A prototype works at 2.4 GHz is developed to demonstrate the PIFA-patch integration scheme. Measured and simulated results of antennas agree well with each other, demonstrating good performance of bandwidth, 2nd-order filtering, radiation and wideband harmonic suppression (up to 11 GHz)

    Quality Index for Stereoscopic Images by Separately Evaluating Adding and Subtracting

    Get PDF
    The human visual system (HVS) plays an important role in stereo image quality perception. Therefore, it has aroused many people’s interest in how to take advantage of the knowledge of the visual perception in image quality assessment models. This paper proposes a full-reference metric for quality assessment of stereoscopic images based on the binocular difference channel and binocular summation channel. For a stereo pair, the binocular summation map and binocular difference map are computed first by adding and subtracting the left image and right image. Then the binocular summation is decoupled into two parts, namely additive impairments and detail losses. The quality of binocular summation is obtained as the adaptive combination of the quality of detail losses and additive impairments. The quality of binocular summation is computed by using the Contrast Sensitivity Function (CSF) and weighted multi-scale (MS-SSIM). Finally, the quality of binocular summation and binocular difference is integrated into an overall quality index. The experimental results indicate that compared with existing metrics, the proposed metric is highly consistent with the subjective quality assessment and is a robust measure. The result have also indirectly proved hypothesis of the existence of binocular summation and binocular difference channels

    Stereoscopic image quality assessment method based on binocular combination saliency model

    Get PDF
    The objective quality assessment of stereoscopic images plays an important role in three-dimensional (3D) technologies. In this paper, we propose an effective method to evaluate the quality of stereoscopic images that are afflicted by symmetric distortions. The major technical contribution of this paper is that the binocular combination behaviours and human 3D visual saliency characteristics are both considered. In particular, a new 3D saliency map is developed, which not only greatly reduces the computational complexity by avoiding calculation of the depth information, but also assigns appropriate weights to the image contents. Experimental results indicate that the proposed metric not only significantly outperforms conventional 2D quality metrics, but also achieves higher performance than the existing 3D quality assessment models

    Bandwidth enhancement of three-device Doherty power amplifier based on symmetric devices

    Get PDF
    This paper proposes a method for extending the bandwidth of a three-device Doherty power amplifier (DPA) based on symmetric devices. λ/4 transmission lines are inserted between each peaking amplifier output and carrier amplifier output to compensate load impedance of carrier amplifier. In order to achieve perfect load modulation, carrier amplifier output circuit total electrical length is designed to 90 degrees, and the peak amplifier output total electrical length is designed to 180 degrees. The proposed method is demonstrated by designing a three-device broadband DPA using three 10-W packaged GaN HEMT devices. Measurement results show that over 40% drain efficiency is achieved at 9-dB back-off power, over the frequency band of 1.45–2.35 GHz, accounting for 46% fractional bandwidth

    Design of 0.8–2.7 GHz High Power Class-F Harmonic-Tuned Power Amplifier with Parasitic Compensation Circuit

    Get PDF
    The design, implementation, and measurements of a high efficiency and high power wideband GaN HEMT power amplifier are presented. Package parasitic effect is reduced significantly by a novel compensation circuit design to improve the accuracy of impedance matching. An improved structure is proposed based on the traditional Class-F structure with all even harmonics and the third harmonic effectively controlled, respectively. Also the stepped-impedance matching method is applied to the third harmonic control network, which has a positive effect on the expansion bandwidth. CGH40025F power transistor is utilized to build the power amplifier working at 0.8 to 2.7?GHz, with the measured saturated output power 20–50?W, drain efficiency 52%–76%, and gain level above 10?dB. The second and the third harmonic suppression levels are maintained at ?16 to ?36?dBc and ?16 to ?33?dBc, respectively. The simulation and the measurement results of the proposed power amplifier show good consistency

    Quality assessment metric of stereo images considering cyclopean integration and visual saliency

    Get PDF
    In recent years, there has been great progress in the wider use of three-dimensional (3D) technologies. With increasing sources of 3D content, a useful tool is needed to evaluate the perceived quality of the 3D videos/images. This paper puts forward a framework to evaluate the quality of stereoscopic images contaminated by possible symmetric or asymmetric distortions. Human visual system (HVS) studies reveal that binocular combination models and visual saliency are the two key factors for the stereoscopic image quality assessment (SIQA) metric. Therefore inspired by such findings in HVS, this paper proposes a novel saliency map in SIQA metric for the cyclopean image called “cyclopean saliency”, which avoids complex calculations and produces good results in detecting saliency regions. Moreover, experimental results show that our metric significantly outperforms conventional 2D quality metrics and yields higher correlations with human subjective judgment than the state-of-art SIQA metrics. 3D saliency performance is also compared with “cyclopean saliency” in SIQA. It is noticed that the proposed metric is applicable to both symmetric and asymmetric distortions. It can thus be concluded that the proposed SIQA metric can provide an effective evaluation tool to assess stereoscopic image quality

    Polarization-Reconfigurable Circularly Polarized Planar Antenna Using Switchable Polarizer

    Get PDF
    A novel polarization-reconfigurable planar antenna is presented. The antenna consists of an electronically reconfigurable polarizer integrated with a printed slot. By changing the states of the PIN diodes on the polarizer, the linearly polarized (LP) waves radiated by the slot can be converted to either right-hand circularly polarized (RHCP) or left-hand circularly polarized (LHCP) waves. The polarizer contains 16 unit cells arranged as a 4 Ă— 4 array. The antenna radiates RHCP waves if the PIN diodes on the top side of the polarizer are switched ON, while LHCP waves are radiated if the PIN diodes of the bottom side of the polarizer are switched ON instead. The physical mechanisms of the antenna are discussed and the parametric study is carried out by full-wave simulations. To verify the concept, one prototype at 2.5 GHz is designed, fabricated and measured. Good agreement between the measured and simulated results is obtained. The antenna achieves a gain ? 8.5 dBic in both RHCP and LHCP with aperture efficiency of 70%. Advantages of the proposed design include electronicallyreconfigurable polarizations for RHCP or LHCP, low profile, low cost, high isolation between the DC bias circuit and RF signals, high power handling capability and easy extension to large-scale arrays without increasing the complexity of the DC bias circuit. To the best knowledge of the authors, this is the first report of an electronically polarization-reconfigurable circularly polarized antenna with a single-substrate polarizer

    Integrated Dual-Band Filtering/Duplexing Antennas

    Get PDF
    In this paper, the state-of-the-art integrated filtering antennas with dual-band operation are first reviewed. Then, two designs of dual-band microstrip filtering antennas with a low frequency-ratio are presented. The 1st design is a dual-band dual-polarization (DBDP) antenna with a frequency ratio of 1.2 on a single patch, by employing the coupled resonator technique. Two bands at each polarization are achieved by vertically coupling a hairpin resonator with a patch through a slot in the ground plane and then coupled to a dual-mode stub loaded resonator (SLR). Each band exhibits a 2nd-order filtering performance with improved bandwidth and out-of-band rejection. Such an integration technique could significantly reduce the dimension and complexity of traditional DBDP antennas/arrays. In the 2nd design, a novel dual-port dual-band antenna (with a frequency ratio of 1.38) with the integrated filtering and duplexing functions is proposed. The frequency duplexing function is implemented by coupling a single patch with two sets of resonator-based filtering channels via a U-slot resonator inserted in the ground. This device seamlessly integrates the functions of duplexers, filters and antennas in a very compact structure

    A Balanced Feed Filtering Antenna With Novel Coupling Structure for Low-Sidelobe Radar Applications

    Get PDF
    A fourth-order filtering patch antenna with a novel coupling structure is presented in this paper. Using the proposed coupling structure, both the balanced coupling feed and cross-coupling are realized. Two identical slots etched on the ground plane are utilized to excite the radiating patch with the reduced cross-polarization level. A short slot etched on the ground plane is employed for cross-coupling, which introduces two controllable radiation nulls with a steep roll-off rate. In addition, owing to the split-ring resonators and hairpin resonators, the improved impedance bandwidth is achieved with the fourth-order filtering response. To demonstrate the proposed design techniques, both the filtering antenna element and the low-sidelobe array are designed, fabricated, and measured. The measured results show that the proposed antenna has the impedance bandwidth of 12% (4.78–5.39 GHz) with the total height of 0.06?0 , the cross-polarization level lower than ?31 dB, and two radiation nulls with the suppression higher than 31 dB. For the low-sidelobe antenna array, wide impedance bandwidth is also obtained with the sidelobe level below ?28.7 dB, the cross-polarization level below ?34 dB, and the out-of-band suppression better than 25 dB

    Frequency-Agile Beam-Switchable Antenna

    Get PDF
    A novel antenna with both frequency and pattern reconfigurability is presented. The reconfigurability is achieved by integrating an active frequency selective surface (AFSS) with feed antenna. The smart FSS comprises a printed slot array loaded by varactors. A novel dc biasing arrangement is proposed to feed the slots vertically so that the unwanted effects caused by bias lines are minimized. A monopole antenna is designed to illuminate the AFSS. The resulting structure can operate in a frequency tuning range of 30%. By reconfiguring the different sections of active FSS cylinder into a transparent or reflector mode, the omnidirectional pattern of the source antenna can be converted to a directive beam. As an illustration, half of the AFSS cylinder is successively biased, enabling the beam switching to cover the entire horizontal plane over a range of frequencies. An antenna prototype was fabricated and measured. Experimental results demonstrate the capability of providing useful gain levels and good impedance matching from 1.7 to 2.3 GHz. The antenna offers a low-cost, low-power solution for wireless systems that require frequency and beam reconfigurable antennas. The proposed design consumes about 1000 times less dc power than the equivalent narrowband beam-switching antenna design using p-i-n diode-loaded AFSS
    • …
    corecore